$\mathbf{M C N P}$
Mathematics of Complex and Nonlinear Phenomena

Towards a (2+1)D Generalised Hydrodynamics

ISIN2023
Northumbria University

Thibault Bonnemain, 28th April 2023
[Based on preliminary work with Benjamin Doyon]

Generalised hydrodynamics and hydrodynamics in general

- Hydrodynamics is everywhere in physics:
- Fluid dynamics (simple fluids Euler 1757)

Generalised hydrodynamics and hydrodynamics in general

- Hydrodynamics is everywhere in physics:
- Fluid dynamics (simple fluids Euler 1757)
- Bose-Einstein condensates (two-fluid model)

Generalised hydrodynamics and hydrodynamics in general

- Hydrodynamics is everywhere in physics:
- Fluid dynamics (simple fluids Euler 1757)
- Bose-Einstein condensates (two-fluid model)
- Magneto hydrodynamics (plasma)

Generalised hydrodynamics and hydrodynamics in general

- Hydrodynamics is everywhere in physics:
- Fluid dynamics (simple fluids Euler 1757)
- Bose-Einstein condensates (two-fluid model)
- Magneto hydrodynamics (plasma)
- Relativistic hydrodynamics (superdense neutron star)

Generalised hydrodynamics and hydrodynamics in general

- Hydrodynamics is everywhere in physics:
- Fluid dynamics (simple fluids Euler 1757)
- Bose-Einstein condensates (two-fluid model)
- Magneto hydrodynamics (plasma)
- Relativistic hydrodynamics (superdense neutron star)
\Rightarrow Generalised hydrodynamics (integrable systems)
[Castro-Alvaredo, Doyon, Yoshimura (2016)] [Bertini, Collura, De Nardis, Fagotti (2016)]

Generalised hydrodynamics and hydrodynamics in general

- Hydrodynamics is everywhere in physics:
- Fluid dynamics (simple fluids Euler 1757)
\Rightarrow Generalised hydrodynamics (integrable systems)
[Castro-Alvaredo, Doyon, Yoshimura (2016)] [Bertini, Collura, De Nardis, Fagotti (2016)]
- Derived from an underlying microscopic model:
\Rightarrow field theories or many-particle systems

Generalised hydrodynamics and hydrodynamics in general

- Hydrodynamics is everywhere in physics:
- Fluid dynamics (simple fluids Euler 1757)
\Rightarrow Generalised hydrodynamics (integrable systems)
[Castro-Alvaredo, Doyon, Yoshimura (2016)] [Bertini, Collura, De Nardis, Fagotti (2016)]
- Derived from an underlying microscopic model:
\Rightarrow field theories or many-particle systems
- Main ingredients:
\Rightarrow local conservation laws + propagation of local "equilibrium"

Conventional hydrodynamics: 1D fluid

- N particles on a circle of perimeter L

Conventional hydrodynamics: 1D fluid

- N particles on a circle of perimeter L
- Conservation laws

$$
\begin{aligned}
& N \\
& P=\sum_{j=1}^{N} p_{j} \quad \begin{array}{c}
\text { Number } \\
\text { of particle }
\end{array} \\
& E=\sum_{j=1}^{N} \frac{p_{j}^{2}}{2}+\sum_{i \neq j} V\left(x_{i}-x_{j}\right) \quad \text { Total momentum }
\end{aligned}
$$

Conventional hydrodynamics: 1D fluid

- N particles on a circle of perimeter L
- Conservation laws

$$
N, \quad P=\sum_{j=1}^{N} p_{j}, \quad E=\sum_{j=1}^{N} \frac{p_{j}^{2}}{2}+\sum_{i \neq j} V\left(x_{i}-x_{j}\right)
$$

- Local densities

$$
\begin{array}{llrl}
q_{0}(x) & =\sum_{j=1}^{N} \delta\left(x-x_{j}\right) & & N=\int_{0}^{L} \mathrm{~d} x q_{0}(x) \\
q_{1}(x) & =\sum_{j=1}^{N} \delta\left(x-x_{j}\right) p_{j} & \text { so that } & P=\int_{0}^{L} \mathrm{~d} x q_{1}(x) \\
q_{2}(x)=\sum_{j=1}^{N} \delta\left(x-x_{j}\right)\left[\frac{p_{j}^{2}}{2}+\sum_{i \neq j} V\left(x_{i}-x_{j}\right)\right] & E=\int_{0}^{L} \mathrm{~d} x q_{2}(x)
\end{array}
$$

Conventional hydrodynamics: 1D fluid

- N particles on a circle of perimeter L
- Conservation laws

$$
N, \quad P=\sum_{j=1}^{N} p_{j}, \quad E=\sum_{j=1}^{N} \frac{p_{j}^{2}}{2}+\sum_{i \neq j} V\left(x_{i}-x_{j}\right)
$$

- Local densities

$$
N=\int_{0}^{L} \mathrm{~d} x q_{0}(x), \quad P=\int_{0}^{L} \mathrm{~d} x q_{1}(x), \quad E=\int_{0}^{L} \mathrm{~d} x q_{2}(x)
$$

- Local conservation laws

Currents

$$
\partial_{t} q_{m}(x, t)+\partial_{x} j_{m}(x, t)=0, \quad m=0,1,2 . \quad-\quad \leftrightarrow \quad \overleftrightarrow{\mathrm{d} x} \mathrm{\leftrightarrow}--
$$

Conventional hydrodynamics: 1D fluid

- N particles on a circle of perimeter L
- Conservation laws

$$
N, \quad P=\sum_{j=1}^{N} p_{j}, \quad E=\sum_{j=1}^{N} \frac{p_{j}^{2}}{2}+\sum_{i \neq j} V\left(x_{i}-x_{j}\right)
$$

- Local densities

$$
N=\int_{0}^{L} \mathrm{~d} x q_{0}(x), \quad P=\int_{0}^{L} \mathrm{~d} x q_{1}(x), \quad E=\int_{0}^{L} \mathrm{~d} x q_{2}(x)
$$

- Local conservation laws

Currents

$$
\partial_{t} \underline{q_{m}(x, t)}+\partial_{x} \underline{j_{m}(x, t)}=0, \quad m=0,1,2 . \quad--\boldsymbol{~} \quad \leftrightarrow \quad \mathbf{d} x \quad=
$$

Functions on phase space or field operators

Local equilibrium

- Boltzmann 1868: micro-canonical ensemble in long time limit

Local equilibrium

- Boltzmann 1868: micro-canonical ensemble in long time limit
$\hat{=} \quad$ Gibbs ensembles $(\mathrm{GE}): \quad \rho \propto \exp [-\beta(E-\mu N-\nu P)]$

Local equilibrium

- Boltzmann 1868: micro-canonical ensemble in long time limit
$\hat{=} \quad$ Gibbs ensembles $(\mathrm{GE}): \quad \rho \propto \exp [-\beta(E-\mu N-\nu P)]$
- Hydrodynamic principle: separation of scales and propagation of local GE

Macroscopic Mesoscopic (fluid cells) Microscopic

Local equilibrium

- Boltzmann 1868: micro-canonical ensemble in long time limit
$\hat{=} \quad$ Gibbs ensembles $(\mathrm{GE}): \quad \rho \propto \exp [-\beta(E-\mu N-\nu P)]$
- Hydrodynamic principle: separation of scales and propagation of local GE

Macroscopic Mesoscopic (fluid cells) Microscopic Slowly varying

Local equilibrium

- Boltzmann 1868: micro-canonical ensemble in long time limit
$\hat{=} \quad$ Gibbs ensembles $(\mathrm{GE}): \quad \rho \propto \exp [-\beta(E-\mu N-\nu P)]$
- Hydrodynamic principle: separation of scales and propagation of local GE

Macroscopic Mesoscopic (fluid cells) Microscopic

Local equilibrium

- Boltzmann 1868: micro-canonical ensemble in long time limit
$\hat{=} \quad$ Gibbs ensembles $(\mathrm{GE}): \quad \rho \propto \exp [-\beta(E-\mu N-\nu P)]$
- Hydrodynamic principle: separation of scales and propagation of local GE

Macroscopic Mesoscopic (fluid cells) Microscopic

Local equilibrium

- Boltzmann 1868: micro-canonical ensemble in long time limit
$\hat{=} \quad$ Gibbs ensembles $(\mathrm{GE}): \quad \rho \propto \exp [-\beta(E-\mu N-\nu P)]$
- Hydrodynamic principle: separation of scales and propagation of local GE

Macroscopic Mesoscopic (fluid cells) Microscopic

Local equilibrium

- Boltzmann 1868: micro-canonical ensemble in long time limit

$$
\hat{=} \quad \text { Generalised Gibbs ensembles }(\mathrm{GE}): \quad \rho \propto e^{-\sum_{n=0}^{\infty} \beta_{n} Q_{n}}
$$

- Hydrodynamic principle: separation of scales and propagation of local GGE

> Macroscopic Mesoscopic (fluid cells) Microscopic

GHD from scattering theory: an example

- KdV: integrable nonlinear dispersive PDE

$$
\partial_{t} u+6 u \partial_{x} u+\partial_{x}^{3} u=0 .
$$

GHD from scattering theory: an example

- KdV: integrable nonlinear dispersive PDE

$$
\partial_{t} u+6 u \partial_{x} u+\partial_{x}^{3} u=0 .
$$

Example of KdV soliton gas

GHD from scattering theory: an example

- KdV: integrable nonlinear dispersive PDE

Example of KdV soliton gas

Fluid cell of size L characterised by local GGE

GHD from scattering theory: an example

N solitons

- KdV: integrable nonlinear dispersive PDE

$$
\partial_{t} u+6 u \partial_{x} u+\partial_{x}^{3} u=0 .
$$

- Multisoliton solution

$$
u_{N} \sim \sum_{i=1}^{N} 2 \eta_{i}^{2} \operatorname{sech}^{2}\left[\eta_{i}\left(x-4 \eta_{i}^{2} t-x_{i}^{ \pm}\right)\right] \text {as } t \rightarrow \pm \infty
$$

GHD from scattering theory: an example

N solitons

- KdV: integrable nonlinear dispersive PDE

$$
\partial_{t} u+6 u \partial_{x} u+\partial_{x}^{3} u=0 .
$$

- Multisoliton solution

$$
u_{N} \sim \sum_{i=1}^{N} 2 \eta_{i}^{2} \operatorname{sech}^{2}\left[\eta_{i}\left(x-4 \eta_{i}^{2} t-x_{i}^{ \pm}\right)\right] \text {as } t \rightarrow \pm \infty
$$

GHD from scattering theory: an example

N solitons

- KdV: integrable nonlinear dispersive PDE

$$
\partial_{t} u+6 u \partial_{x} u+\partial_{x}^{3} u=0 .
$$

- Multisoliton solution

$$
u_{N} \sim \sum_{i=1}^{N} 2 \eta_{i}^{2} \operatorname{sech}^{2}\left[\eta_{i}\left(x-4 \eta_{i}^{2} t-x_{i}^{ \pm}\right)\right] \text {as } t \rightarrow \pm \infty
$$

GHD from scattering theory: an example

N solitons

- KdV: integrable nonlinear dispersive PDE

$$
\partial_{t} u+6 u \partial_{x} u+\partial_{x}^{3} u=0 .
$$

- Multisoliton solution

$$
u_{N} \sim \sum_{i=1}^{N} 2 \eta_{i}^{2} \operatorname{sech}^{2}\left[\eta_{i}\left(x-4 \eta_{i}^{2} t-x_{i}^{ \pm}\right)\right] \quad \text { as } \quad t \rightarrow \pm \infty
$$

- Relation between asymptotic states given by scattering shift

$$
x_{i}^{+}-x_{i}^{-}=\sum_{j} \frac{\operatorname{sgn}\left(\eta_{\mathrm{i}}-\eta_{\mathrm{j}}\right)}{\eta_{i}} \ln \left|\frac{\eta_{i}+\eta_{j}}{\eta_{i}-\eta_{j}}\right|
$$

Thermodynamics

- Partition function

$$
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} p\left(\eta_{i}\right)}{2 \pi} \mathrm{~d} x_{i}^{-} \exp \left[-\sum_{i=1}^{N} w\left(\eta_{i}\right)\right] \chi\left(u_{N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right)
$$

Thermodynamics

- Partition function

$$
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} p\left(\eta_{i}\right)}{2 \pi} \mathrm{~d} x_{i}^{-} \exp \left[-\sum_{i=1}^{N} w\left(\eta_{i}\right)\right] \chi\left(u_{N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right)
$$

Soliton bare velocity

$$
p(\eta)=4 \eta^{2}
$$

Thermodynamics

- Partition function

$$
\begin{gathered}
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \underline{\frac{\mathrm{~d} p\left(\eta_{i}\right)}{2 \pi}} \mathrm{~d} x_{i}^{-} \exp \underbrace{\left[-\sum_{i=1}^{N} w\left(\eta_{i}\right)\right]}_{\begin{array}{c}
\text { Generalised } \\
\text { Soliton bare velocity } \\
\text { Gibbs weights }
\end{array}} \chi\left(u_{N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right) \\
p(\eta)=4 \eta^{2} \quad \text { e.g. } \quad w(\eta)=\sum_{k} \beta_{k} h_{k}(\eta) \\
h_{n}(\eta)=Q_{n} \text { for a single soliton } \eta
\end{gathered}
$$

Thermodynamics

- Partition function

$$
\begin{gathered}
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \underline{\frac{\mathrm{~d} p\left(\eta_{i}\right)}{2 \pi}} \mathrm{~d} x_{i}^{-} \exp \underbrace{\left[-\sum_{i=1}^{N} w\left(\eta_{i}\right)\right]}_{\begin{array}{c}
\text { Generalised } \\
\text { Soliton bare velocity } \\
\text { Gibbs weights }
\end{array}} \chi\left(u_{N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right) \\
p(\eta)=4 \eta^{2} \quad \text { e.g. } \quad w(\eta)=\sum_{k} \beta_{k} \eta^{2 k+1} \\
h_{n}(\eta)=Q_{n} \text { for a single soliton } \eta
\end{gathered}
$$

Thermodynamics

- Partition function

$$
\begin{gathered}
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} p\left(\eta_{i}\right)}{2 \pi} \mathrm{~d} x_{i}^{-} \exp \left[\begin{array}{c}
\text { Soliton bare velocity } \\
p(\eta)=4 \eta^{2} \quad \begin{array}{c}
\text { Generalised } \\
\text { Gibbs weights }
\end{array} \\
\text { e.g. } \left.w(\eta)=\sum_{i=1}^{N} \beta_{k} \eta^{2 k+1} \eta_{i}\right) \\
\text { Constraint / Entropy } \\
h_{n}(\eta)=Q_{n} \text { for a single soliton } \eta
\end{array}\right.
\end{gathered}
$$

Thermodynamics

- Partition function

$$
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} p\left(\eta_{i}\right)}{2 \pi} \mathrm{~d} x_{i}^{-} \exp \left[-\sum_{i=1}^{N} w\left(\eta_{i}\right)\right] \chi\left(u_{N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right)
$$

- Thermodynamic limit $L \rightarrow \infty$

$$
\mathcal{Z} \asymp \exp (-L \mathcal{F}), \quad \mathcal{F}=-\int_{\Gamma} \frac{\eta \mathrm{d} \eta}{\sigma(\eta)}
$$

Thermodynamics

- Partition function

$$
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} p\left(\eta_{i}\right)}{2 \pi} \mathrm{~d} x_{i}^{-} \exp \left[-\sum_{i=1}^{N} w\left(\eta_{i}\right)\right] \chi\left(u_{N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right)
$$

- Thermodynamic limit $L \rightarrow \infty$

$$
\mathcal{Z} \asymp \exp (-L \mathcal{F}), \quad \mathcal{F}=-\int_{\Gamma} \frac{\eta \mathrm{d} \eta}{\sigma(\eta)} \longrightarrow \quad \begin{gathered}
\sigma \stackrel{\mathrm{TBA}}{\longleftrightarrow}\left\{\beta_{n}\right\} \\
\text { Spectral scaling function }
\end{gathered}
$$

Thermodynamics

- Partition function

$$
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} p\left(\eta_{i}\right)}{2 \pi} \mathrm{~d} x_{i}^{-} \exp \left[-\sum_{i=1}^{N} w\left(\eta_{i}\right)\right] \chi\left(u_{N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right)
$$

- Thermodynamic limit $L \rightarrow \infty$

$$
\mathcal{Z} \asymp \exp (-L \mathcal{F}), \quad \mathcal{F}=-\int_{\Gamma} \frac{\eta \mathrm{d} \eta}{\sigma(\eta)} \longrightarrow \quad \begin{aligned}
& \rho \stackrel{\mathrm{NDR}}{\longleftrightarrow} \sigma \stackrel{\mathrm{TBA}}{\longleftrightarrow}\left\{\beta_{n}\right\} \\
& \text { Spectral scaling function }
\end{aligned}
$$

- NDR of soliton gases

$$
\sigma(\eta) \rho(\eta)=\eta-\int_{\Gamma} \mathrm{d} \mu \rho(\mu) \log \left|\frac{\eta+\mu}{\eta-\mu}\right|
$$

$\rho(\eta) \mathrm{d} \eta \mathrm{d} x=\#$ of solitons in $[x, x+\mathrm{d} x] \times[\eta, \eta+\mathrm{d} \eta]$

Thermodynamics

- Partition function

$$
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} p\left(\eta_{i}\right)}{2 \pi} \mathrm{~d} x_{i}^{-} \exp \left[-\sum_{i=1}^{N} w\left(\eta_{i}\right)\right] \chi\left(u_{N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right)
$$

- Thermodynamic limit $L \rightarrow \infty$

$$
\mathcal{Z} \asymp \exp (-L \mathcal{F}), \quad \mathcal{F}=-\int_{\Gamma} \frac{\eta \mathrm{d} \eta}{\sigma(\eta)} \longrightarrow \quad \rho \stackrel{\mathrm{NDR}}{\longleftrightarrow} \sigma \stackrel{\mathrm{TBA}}{\longleftrightarrow}\left\{\beta_{n}\right\}
$$

- NDR of soliton gases

$$
\sigma(\eta) \rho(\eta)=\eta-\int_{\Gamma} \mathrm{d} \mu \rho(\mu) \log \left|\frac{\eta+\mu}{\eta-\mu}\right|
$$

$\rho(\eta) \mathrm{d} \eta \mathrm{d} x=\#$ of solitons in $[x, x+\mathrm{d} x] \times[\eta, \eta+\mathrm{d} \eta]$

- Alternative interpretation

$$
\frac{\mathrm{d} x^{-}(\eta)}{\mathrm{d} x}=\frac{\sigma(\eta) \rho(\eta)}{\eta}
$$

From thermodynamics to hydrodynamics

- Integrability: infinite number of conservation laws

$$
\partial_{t} q_{n}+\partial_{x} j_{n}=0
$$

From thermodynamics to hydrodynamics

- Integrability: infinite number of conservation laws

$$
\partial_{t} q_{n}+\partial_{x} j_{n}=0
$$

- Hydrodynamic approximation: separation of scales

$$
\langle o(x, t)\rangle \approx\langle o\rangle_{\left\{\beta_{n}(x, t)\right\}} \equiv \bar{o}_{n}(x, t)
$$

From thermodynamics to hydrodynamics

- Integrability: infinite number of conservation laws

$$
\partial_{t} q_{n}+\partial_{x} j_{n}=0
$$

- Hydrodynamic approximation: separation of scales

$$
\langle o(x, t)\rangle \approx\langle o\rangle_{\left\{\beta_{n}(x, t)\right\}} \equiv \bar{o}_{n}(x, t)
$$

Fluid cell average

$$
\partial_{t} \bar{q}_{n}(x, t)+\partial_{x} \bar{j}_{n}(x, t)=0
$$

From thermodynamics to hydrodynamics

- Integrability: infinite number of conservation laws

$$
\partial_{t} q_{n}+\partial_{x} j_{n}=0
$$

- Hydrodynamic approximation: separation of scales

$$
\begin{aligned}
& \langle o(x, t)\rangle \approx\langle o\rangle_{\left\{\beta_{n}(x, t)\right\}} \equiv \bar{o}_{n}(x, t) \\
& \partial_{t} \bar{q}_{n}(x, t)+\partial_{x} \bar{j}_{n}(x, t)=0 \\
& \bar{q}_{n}(x, t)=\int \mathrm{d} k \rho(k ; x, t) h_{n}(k)
\end{aligned}
$$

From thermodynamics to hydrodynamics

- Integrability: infinite number of conservation laws

$$
\partial_{t} q_{n}+\partial_{x} j_{n}=0
$$

- Hydrodynamic approximation: separation of scales

$$
\begin{aligned}
&\langle o(x, t)\rangle \approx\langle o\rangle_{\left\{\beta_{n}(x, t)\right\}} \equiv \bar{o}_{n}(x, t) \\
& \text { Fluid cell average } \\
& \partial_{t} \bar{q}_{n}(x, t)+\partial_{x} \bar{j}_{n}(x, t)=0 \\
& \bar{q}_{n}(x, t)=\int \mathrm{d} k \rho(k ; x, t) h_{n}(k) \quad=\int \mathrm{d} k \rho(k ; x, t) h_{n}(k) v^{\text {eff }}(k ; x, t)
\end{aligned}
$$

From thermodynamics to hydrodynamics

- Integrability: infinite number of conservation laws

$$
\partial_{t} q_{n}+\partial_{x} j_{n}=0
$$

- Hydrodynamic approximation: separation of scales

$$
\langle o(x, t)\rangle \approx\langle o\rangle_{\left\{\beta_{n}(x, t)\right\}} \equiv \bar{o}_{n}(x, t)
$$

Fluid cell average

$$
\partial_{t} \bar{q}_{n}(x, t)+\partial_{x} \bar{j}_{n}(x, t)=0
$$

$$
\bar{q}_{n}(x, t)=\int \mathrm{d} k \rho(k ; x, t) h_{n}(k) \quad \bar{j}_{n}(x, t)=\int \mathrm{d} k \rho(k ; x, t) h_{n}(k) v^{\text {eff }}(k ; x, t)
$$

$$
\partial_{t} \rho(k ; x, t)+\partial_{x}\left[v^{\mathrm{eff}}(k ; x, t) \rho(k ; x, t)\right]=0
$$

From thermodynamics to hydrodynamics

- Integrability: infinite number of conservation laws

$$
\partial_{t} q_{n}+\partial_{x} j_{n}=0
$$

- Hydrodynamic approximation: separation of scales

$$
\langle o(x, t)\rangle \approx\langle o\rangle_{\left\{\beta_{n}(x, t)\right\}} \equiv \bar{o}_{n}(x, t)
$$

$$
\begin{gathered}
\partial_{t} \rho(k ; x, t)+\partial_{x}\left[v^{\text {eff }}(k ; x, t) \rho(k ; x, t)\right]=0 \\
v^{\mathrm{eff}}(k)=4 \eta^{2}+\frac{1}{\eta} \int_{\Gamma} \log \left|\frac{\eta+\mu}{\eta-\mu}\right| \rho(\mu)\left[v^{\mathrm{eff}}(\eta)-v^{\mathrm{eff}}(\mu)\right] \mathrm{d} \mu
\end{gathered}
$$

A type of (2+1)d GHD featuring line solitons

- Inspired by the phenomenology of the KP equation

$$
\partial_{x}\left(\partial_{t} u+6 u \partial_{x} u+\partial_{x x x} u\right) \pm 3 \partial_{y y} u=0
$$

A type of (2+1)d GHD featuring line solitons

- Inspired by the phenomenology of the KP equation

$$
\partial_{x}\left(\partial_{t} u+6 u \partial_{x} u+\partial_{x x x} u\right) \pm 3 \partial_{y y} u=0
$$

- Focus on gas of "lines" to make the jump from $(1+1)$ to $(2+1) \mathrm{D}$ easier

A type of (2+1)d GHD featuring line solitons

- Inspired by the phenomenology of the KP equation

$$
\partial_{x}\left(\partial_{t} u+6 u \partial_{x} u+\partial_{x x x} u\right) \pm 3 \partial_{y y} u=0
$$

- Focus on gas of "lines" to make the jump from $(1+1)$ to $(2+1) \mathrm{D}$ easier
- Elastic and factorised scattering

(a), $t=-5$.

(b), $t=0$.

(c), $t=5$.

Gas of «lines»

Gas of «lines»

Assumptions

- $\theta_{i} \neq \theta_{j}, i \neq j$
$\Rightarrow \mathrm{IR}$ is finite
\Rightarrow Every soliton interacts with every other in the IR

Gas of «lines»

Assumptions

- $\theta_{i} \neq \theta_{j}, i \neq j$
$\Rightarrow \mathrm{IR}$ is finite
\Rightarrow Every soliton interacts with every other in the IR
- Shift

$$
\begin{aligned}
& K_{i j} \equiv K\left(v_{i}, \theta_{i} ; v_{j}, \theta_{j}\right) \\
& K_{i}=\sum_{j \neq i} K_{i j}
\end{aligned}
$$

Gas of «lines»

Assumptions

- $\theta_{i} \neq \theta_{j}, i \neq j$
$\Rightarrow \mathrm{IR}$ is finite
\Rightarrow Every soliton interacts with every other in the IR
- Shift

$$
\begin{aligned}
& K_{i j} \equiv K\left(v_{i}, \theta_{i} ; v_{j}, \theta_{j}\right) \\
& K_{i}=\sum_{j \neq i} K_{i j}
\end{aligned}
$$

- Homogeneous gas in bulk of IR

Effective orientation

Line density of reference

- Want to relate $\tilde{\rho}(v, \theta ; \varphi)$ to $\tilde{\rho}(v, \theta ; 0)$

Line density of reference

- Want to relate $\tilde{\rho}(v, \theta ; \varphi)$ to $\tilde{\rho}(v, \theta ; 0)$

$$
\tilde{\rho}(v, \theta ; 0) \sim \frac{1}{\Delta(v, \theta)} \quad \text { and } \quad \tilde{\rho}(v, \theta ; \varphi) \sim \frac{1}{\Delta^{\prime}(v, \theta)}
$$

Typical distance between two solitons with parameters in the vicinity of (v, θ) as they intersect the horizontal

Line density of reference

- Want to relate $\tilde{\rho}(v, \theta ; \varphi)$ to $\tilde{\rho}(v, \theta ; 0)$

$$
\tilde{\rho}(v, \theta ; 0) \sim \frac{1}{\Delta(v, \theta)} \quad \text { and } \quad \tilde{\rho}(v, \theta ; \varphi) \sim \frac{1}{\Delta^{\prime}(v, \theta)}
$$

- Geometric argument

Line density of reference

- Want to relate $\tilde{\rho}(v, \theta ; \varphi)$ to $\tilde{\rho}(v, \theta ; 0)$

$$
\tilde{\rho}(v, \theta ; 0) \sim \frac{1}{\Delta(v, \theta)} \quad \text { and } \quad \tilde{\rho}(v, \theta ; \varphi) \sim \frac{1}{\Delta^{\prime}(v, \theta)}
$$

- Geometric argument

$$
\Delta=\Delta^{\prime} \sin \varphi\left(\cot \varphi-\cot \theta^{\mathrm{eff}}\right)
$$

$\tilde{\rho}(v, \theta ; \varphi)=\tilde{\rho}(v, \theta ; 0)|\sin \varphi|\left|\cot \varphi-\cot \theta^{\text {eff }}\right|$

Line density of reference

- Want to relate $\tilde{\rho}(v, \theta ; \varphi)$ to $\tilde{\rho}(v, \theta ; 0)$

$$
\tilde{\rho}(v, \theta ; 0) \sim \frac{1}{\Delta(v, \theta)} \quad \text { and } \quad \tilde{\rho}(v, \theta ; \varphi) \sim \frac{1}{\Delta^{\prime}(v, \theta)}
$$

- Geometric argument

$$
\Delta=\Delta^{\prime} \sin \varphi\left(\cot \varphi-\cot \theta^{\mathrm{eff}}\right)
$$

- Effective orientation
$\theta^{\mathrm{eff}}(v, \theta)=\theta-\arcsin \left[\int \tilde{\rho}(u, \alpha ; 0) K(v, \theta ; u, \alpha)\left|\sin \theta^{\mathrm{eff}}(v, \theta)\right|\left|\cot \theta^{\mathrm{eff}}(v, \theta)-\cot \alpha^{\mathrm{eff}}(u, \alpha)\right| \mathrm{d} u \mathrm{~d} \alpha\right]$

Refraction and effective velocity

- Similarities with refraction: there should be a way to relate $\theta^{\text {eff }}$ and $v^{\text {eff }}$

Refraction and effective velocity

- Similarities with refraction: there should be a way to relate $\theta^{\text {eff }}$ and $v^{\text {eff }}$
- Geometric argument: assume that over $\mathrm{d} t$ IR does not change and over $\mathrm{d} x$ it can be considered flat

Refraction and effective velocity

- Similarities with refraction: there should be a way to relate $\theta^{\text {eff }}$ and $v^{\text {eff }}$
- Geometric argument: assume that over $\mathrm{d} t$ IR does not change and over $\mathrm{d} x$ it can be considered flat

$$
\frac{v^{\mathrm{eff}}}{v}=\frac{\sin \theta^{\mathrm{eff}}}{\sin \theta}
$$

Snell's law!

Refraction and effective velocity

- Similarities with refraction: there should be a way to relate $\theta^{\text {eff }}$ and $v^{\text {eff }}$
- Geometric argument: assume that over $\mathrm{d} t$ IR does not change and over $\mathrm{d} x$ it can be considered flat

$$
\frac{v^{\mathrm{eff}}}{v}=\frac{\sin \theta^{\mathrm{eff}}}{\sin \theta} \quad \text { Snell's law! }
$$

- Remark 1: θ w.r.t the horizontal

Refraction and effective velocity

- Similarities with refraction: there should be a way to relate θ^{eff} and $v^{\text {eff }}$
- Geometric argument: assume that over $\mathrm{d} t \mathrm{IR}$ does not change and over $\mathrm{d} x$ it can be considered flat

$$
\frac{v^{\mathrm{eff}}}{v}=\frac{\sin \theta^{\mathrm{eff}}}{\sin \theta} \quad \text { Snell's law! }
$$

- Remark 1: θ w.r.t the horizontal
- Remark 2: for $\theta^{\text {eff }} \approx \theta$
$v^{\mathrm{eff}} \approx v\left\{1-\cot \theta\left[\int \tilde{\rho}(u, \alpha ; 0) K(v, \theta ; u, \alpha)\left|\sin \theta^{\mathrm{eff}}(v, \theta)\right|\left|\cot \theta^{\mathrm{eff}}(v, \theta)-\cot \alpha^{\mathrm{eff}}(u, \alpha)\right| \mathrm{d} u \mathrm{~d} \alpha\right]\right\}$

Analogy with (1+1)D models

- Gas of lines allows for analogy with ($1+1$)D systems

Snapshot of KP N-soliton solution in the (x, y) plane
Space-time trajectories of quasi particles in a (1+1)d system

Analogy with (1+1)D models

- Gas of lines allows for analogy with (1+1)D systems
[Courtesy of F. Hubner]

Space-time trajectories of quasi particles in a (1+1)d system

[Courtesy of G. Roberti]

Snapshot of KP Nsoliton solution in the (x, y) plane

- At fixed time KP equation yields an (integrable) Boussinesq equation

$$
6 \partial_{x}\left(u \partial_{x} u\right)+\partial_{x x x x} u \pm 3 \partial_{y y} u=0
$$

Analogy with (1+1)D models

- Gas of lines allows for analogy with ($1+1$) D systems
[Courtesy of F. Hubner]

Space-time trajectories of quasi particles in a (1+1)d system

[Courtesy of G. Roberti] Snapshot of KP Nsoliton solution in the (x, y) plane

- At fixed time KP equation yields an (integrable) Boussinesq equation

$$
6 \partial_{x}\left(u \partial_{x} u\right)+\partial_{x x x x} u \pm 3 \partial_{y y} u=0
$$

- Proposition: study the gas of lines through GHD of its (1+1)D counterpart

Analogy with (1+1)D models

- Gas of lines allows for analogy with (1+1)D systems
[Courtesy of F. Hubner]

Space-time trajectories of quasi particles in a (1+1)d system

[Courtesy of G. Roberti] Snapshot of KP Nsoliton solution in the (x, y) plane

- At fixed time KP equation yields an (integrable) Boussinesq equation

$$
6 \partial_{x}\left(u \partial_{x} u\right)+\partial_{x x x x} u \pm 3 \partial_{y y} u=0
$$

- Proposition: study the gas of lines through GHD of its (1+1)D counterpart \Rightarrow Snapshot from (1+1)D space-time trajectories

Analogy with (1+1)D models

- Gas of lines allows for analogy with (1+1)D systems
[Courtesy of F. Hubner]

Space-time trajectories of quasi particles in a (1+1)d system

[Courtesy of G. Roberti] Snapshot of KP Nsoliton solution in the (x, y) plane

- At fixed time KP equation yields an (integrable) Boussinesq equation

$$
6 \partial_{x}\left(u \partial_{x} u\right)+\partial_{x x x x} u \pm 3 \partial_{y y} u=0
$$

- Proposition: study the gas of lines through GHD of its (1+1)D counterpart
\Rightarrow Snapshot from ($1+1$)D space-time trajectories
\Rightarrow Dynamics obtained by varying the impact parameters $x_{1 \mathrm{D}, i}^{-}$via $v_{2 \mathrm{D}, i}$

Refraction revisited

Refraction revisited

- Identify θ with $v_{1 \mathrm{D}}$

$$
v_{1 \mathrm{D}} \leftrightarrow \frac{1}{\tan \theta} \quad \text { and } \quad v_{1 \mathrm{D}}^{\mathrm{eff}} \leftrightarrow \frac{1}{\tan \theta^{\mathrm{eff}}}
$$

Refraction revisited

- Identify θ with $v_{1 \mathrm{D}}$

$$
v_{1 \mathrm{D}} \leftrightarrow \frac{1}{\tan \theta} \quad \text { and } \quad v_{1 \mathrm{D}}^{\mathrm{eff}} \leftrightarrow \frac{1}{\tan \theta^{\mathrm{eff}}}
$$

- Recall "Snell's law"

$$
\frac{v_{2 \mathrm{D}}^{\mathrm{eff}}}{v_{2 \mathrm{D}}}=\frac{\sin \theta^{\mathrm{eff}}}{\sin \theta}=\sqrt{\frac{1+\cot ^{2} \theta}{1+\cot ^{2} \theta}}
$$

Refraction revisited

- Identify θ with $v_{1 \mathrm{D}}$

$$
v_{1 \mathrm{D}} \leftrightarrow \frac{1}{\tan \theta} \quad \text { and } \quad v_{1 \mathrm{D}}^{\mathrm{eff}} \leftrightarrow \frac{1}{\tan \theta^{\mathrm{eff}}}
$$

- Recall "Snell's law"

$$
\begin{aligned}
& \frac{v_{2 \mathrm{D}}^{\mathrm{eff}}}{v_{2 \mathrm{D}}}=\frac{\sin \theta^{\mathrm{eff}}}{\sin \theta}=\sqrt{\frac{1+\cot ^{2} \theta}{1+\cot ^{2} \theta^{\mathrm{eff}}}} \\
& \Rightarrow \quad\left(v_{2 \mathrm{D}}^{\mathrm{eff}}\right)^{2}\left[1+\left(v_{1 \mathrm{D}}^{\mathrm{eff}}\right)^{2}\right]=v_{2 \mathrm{D}}^{2}\left[1+v_{1 \mathrm{D}}^{2}\right]
\end{aligned}
$$

Refraction revisited

- Identify θ with $v_{1 \mathrm{D}}$

$$
v_{1 \mathrm{D}} \leftrightarrow \frac{1}{\tan \theta} \quad \text { and } \quad v_{1 \mathrm{D}}^{\mathrm{eff}} \leftrightarrow \frac{1}{\tan \theta^{\mathrm{eff}}}
$$

- Recall "Snell's law"

$$
\frac{v_{2 \mathrm{D}}^{\mathrm{eff}}}{v_{2 \mathrm{D}}}=\frac{\sin \theta^{\mathrm{eff}}}{\sin \theta} \Rightarrow\left(v_{2 \mathrm{D}}^{\mathrm{eff}}\right)^{2}\left[1+\left(v_{1 \mathrm{D}}^{\text {eff }}\right)^{2}\right]=v_{2 \mathrm{D}}^{2}\left[1+v_{1 \mathrm{D}}^{2}\right]
$$

- Identify line density $\tilde{\rho}(v, \theta ; 0)$ with $\operatorname{DOS} \rho_{1 \mathrm{D}}(p)$

$$
\begin{aligned}
& \int \tilde{\rho}(v, \theta ; 0) \mathrm{d} v \mathrm{~d} \theta=\int \rho_{1 \mathrm{D}}(p) \mathrm{d} p \\
\Rightarrow & \rho_{1 \mathrm{D}}(p)=\frac{v_{1 \mathrm{D}}^{\prime}(p)}{1+v_{1 \mathrm{D}}^{2}(p)} \int \tilde{\rho}(v, \operatorname{acot} p ; 0) \mathrm{d} v
\end{aligned}
$$

Perspectives

Perspectives

- Use GHD of a $(1+1)$ D models with different types of particles so that

$$
\rho_{1 \mathrm{D}}(v, p)=\frac{v_{1 \mathrm{D}}^{\prime}(p)}{1+v_{1 \mathrm{D}}^{2}(p)} \tilde{\rho}(v, \operatorname{acot} p ; 0)
$$

Perspectives

- Use GHD of a $(1+1)$ D models with different types of particles so that

$$
\rho_{1 \mathrm{D}}(v, p)=\frac{v_{1 \mathrm{D}}^{\prime}(p)}{1+v_{1 \mathrm{D}}^{2}(p)} \tilde{\rho}(v, \operatorname{acot} p ; 0)
$$

- Relate phase shifts from $(2+1) \mathrm{D}$ model and that of its $(1+1) \mathrm{D}$ counterpart

Perspectives

- Use GHD of a $(1+1)$ D models with different types of particles so that

$$
\rho_{1 \mathrm{D}}(v, p)=\frac{v_{1 \mathrm{D}}^{\prime}(p)}{1+v_{1 \mathrm{D}}^{2}(p)} \tilde{\rho}(v, \operatorname{acot} p ; 0)
$$

- Relate phase shifts from $(2+1) \mathrm{D}$ model and that of its $(1+1) \mathrm{D}$ counterpart
- Partition function of the gas of lines from that of its $(1+1) \mathrm{D}$ counterpart

Perspectives

- Use GHD of a $(1+1)$ D models with different types of particles so that

$$
\rho_{1 \mathrm{D}}(v, p)=\frac{v_{1 \mathrm{D}}^{\prime}(p)}{1+v_{1 \mathrm{D}}^{2}(p)} \tilde{\rho}(v, \operatorname{acot} p ; 0)
$$

- Relate phase shifts from $(2+1) \mathrm{D}$ model and that of its $(1+1) \mathrm{D}$ counterpart
- Partition function of the gas of lines from that of its $(1+1) \mathrm{D}$ counterpart

$$
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} v_{1 \mathrm{D}}\left(p_{i}\right)}{2 \pi} \mathrm{~d} v_{i} \mathrm{~d} x_{1 \mathrm{D}, i}^{-} \exp \left[-\sum_{i=1}^{N} w\left(v_{i}, \theta_{i}\right)\right] \chi\left(u_{1 \mathrm{D}, N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right)
$$

Perspectives

- Use GHD of a $(1+1)$ D models with different types of particles so that

$$
\rho_{1 \mathrm{D}}(v, p)=\frac{v_{1 \mathrm{D}}^{\prime}(p)}{1+v_{1 \mathrm{D}}^{2}(p)} \tilde{\rho}(v, \operatorname{acot} p ; 0)
$$

- Relate phase shifts from $(2+1) \mathrm{D}$ model and that of its $(1+1) \mathrm{D}$ counterpart
- Partition function of the gas of lines from that of its $(1+1) \mathrm{D}$ counterpart

$$
\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} v_{1 \mathrm{D}}\left(p_{i}\right)}{2 \pi} \mathrm{~d} v_{i} \mathrm{~d} x_{1 \mathrm{D}, i}^{-} \exp \left[-\sum_{i=1}^{N} w\left(v_{i}, \theta_{i}\right)\right] \chi\left(u_{1 \mathrm{D}, N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right)
$$

- Correlations, entropy, $\sigma_{2 \mathrm{D}}$?

Perspectives

- Use GHD of a $(1+1)$ D models with different types of particles so that

$$
\rho_{1 \mathrm{D}}(v, p)=\frac{v_{1 \mathrm{D}}^{\prime}(p)}{1+v_{1 \mathrm{D}}^{2}(p)} \tilde{\rho}(v, \operatorname{acot} p ; 0)
$$

- Relate phase shifts from $(2+1) \mathrm{D}$ model and that of its $(1+1) \mathrm{D}$ counterpart
- Partition function of the gas of lines from that of its $(1+1) \mathrm{D}$ counterpart
$\mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{\Gamma^{N} \times \mathbb{R}^{N}} \prod_{i=1}^{N} \frac{\mathrm{~d} v_{1 \mathrm{D}}\left(p_{i}\right)}{2 \pi} \mathrm{~d} v_{i} \mathrm{~d} x_{1 \mathrm{D}, i}^{-} \exp \left[-\sum_{i=1}^{N} w\left(v_{i}, \theta_{i}\right)\right] \chi\left(u_{1 \mathrm{D}, N}(x, t=0)<\epsilon_{x}, x \notin[0, L]\right)$
- Correlations, entropy, $\sigma_{2 \mathrm{D}}$?
- For any $(1+1)$ D integrable model there should be an associated gas of lines. How much is this relevant?

