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Intruder crossing a static crowd

[Nicolas et al. (2019)]
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Experiment (Averaged) pedestrian density Velocity field
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Granular matter

Simulation: monolayer of
vibrated discs
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Time TO COlliSion models Based on [Echeverria-Huarte, Nicolas(2023)]
and [Karamouzas et al. (2017)]

Simulation (Averaged) pedestrian density Velocity field

Y|

Pedestrlans Density (ped / m?)

0 1




To sum up...

e “Mechanical” models (granular and social forces) drastically fail to reproduce
the qualitative features of the experiment.




To sum up...

e “Mechanical” models (granular and social forces) drastically fail to reproduce
the qualitative features of the experiment.

e More modern TTC models struggle to do so.




To sum up...

e “Mechanical” models (granular and social forces) drastically fail to reproduce
the qualitative features of the experiment.

e More modern TTC models struggle to do so.

e Experimental results are quite intuitive.




To sum up...

e “Mechanical” models (granular and social forces) drastically fail to reproduce
the qualitative features of the experiment.

e More modern TTC models struggle to do so.

e Experimental results are quite intuitive.

Change of paradigm

e Long-term anticipation — Competitive optimisation — Game theory




To sum up...

e “Mechanical” models (granular and social forces) drastically fail to reproduce
the qualitative features of the experiment.

e More modern TTC models struggle to do so.
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Change of paradigm

e Long-term anticipation — Competitive optimisation — Game theory

e Dense crowd — Many-body problem — Mean-field




[Bonnemain et al. (2023)]

Comparing the different approaches
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Another example in a non-controlled environment




Game theory

Def: Mathematical framework to study strategic optimization.




Game theory

Def: Mathematical framework to study strategic optimization.

1/, - 1 .
Hawk-Dove i (% %) (1;0)

paradigm

D (0;1) (Y% ; 1)




Mean Field Games

e Subdiscipline of Game Theory: problems of optimization with interacting
agents in the large N limit.




Mean Field Games

e Subdiscipline of Game Theory: problems of optimization with interacting
agents in the large N limit.

e Relatively recent: seminal papers published in 2006.

[Lasry, Lions (2006)] [Huang, Malhamé, Caines (2006)]




Mean Field Games

e Subdiscipline of Game Theory: problems of optimization with interacting
agents in the large N limit.

e Relatively recent: seminal papers published in 2006.

[Lasry, Lions (2006)] [Huang, Malhamé, Caines (2006)]

e Wide litterature: mathematics, engineering sciences, economics, sociology ...

[Lachapelle, Wolfram (2011)] [Guéant et al. (2012)]
[Gomes, Saude (2014)] [Laguzet, Turinici (2015)]
[Achdou et al. (2016)] [Cardaliaguet, Lehalle (2017)]

[Bremaud, Ullmo (2022)] [Bonnemain et al. (2023)]
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MFG paradigm: population dynamics
e Nagentsi=1,2,--- N (N >1)

[Guéant, Lasry, Lions (2011)]

e state of agent i — real vector X' (position, capital, beliefs...)
|
m(x,t) = N Z 6(x — X3}) density of agents

e agent’s dynamic
dX! = aldt + odw!

dw! = white noise
drift a’ = control parameter

e agent tries to optimize (by the proper choice of a!) the cost function

f [ (4t - om(xi,9) - 0K - v1) ) s + ex(X)|

running cost terminal cost = 0




Mean Field Games equations

e Optimization: linear programming leads to a (backward)
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e Optimization: linear programming leads to a (backward)
Hamilton-Jacobi-Bellman equation for the value function u(x,t)

9 +i(v )2+"—2A = V[m|(z, 1)
LU 2 xU 5 xuU =V iml(x,

\ u(x,t=T) = cp(x)

(HJB) .

N

e Langevin dynamic dX! = aldt + odw?! leads to a (forward) diffusion
equation for the density m(z, 1)

optimal control a

( Vxu o2
6’tm—Vx[m = ]~—Axm:O
4 7 2 (Kolmogorov) .
\ m(x,t=0) = mg(x)

Mean Field Game = coupling between a (collective) stochastic motion
and an (individual) optimization problem through a mean field
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A simple example




Non-linear Schrodinger representation
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Non-linear Schrodinger representation

[Bonnemain, Gobron, Ullmo Phys.Lett. A (2020) ; SciPost (2020) ; J. Math. Phys. (2021)]

Introduce two new variables ®.(x,1), ['o(x,t) defined by:

Ue (Xa t) — _MJQ log (q)e(xa t)) me(xa t) =T (Xv t)q)e (Xa t)

4 0_4
AT, = “TAXFG + Up(x)Te + gmeTe

po
AP, = TAXCI)G + Up(X)Pe + g mePe

NU = —— AU 4 Up(x)V + g|T|* T

Non-Linear Schrodinger

(U, % h) — (®,T,iuc?)

Rubidium atoms (170 nK)
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Quantum mechanical formalism o
[Ullmo, Swiecicki, Gobron (2019)]

e Operators: X =x .

~

A

1= po?Vy , O = f(II, X)

o Average: (O)(t) = [dx I'(x,t)0®(x,t), m =T

¢ Hamiltonian: H = — (% + gPl' + Uo)

{ — uo?9,I' = HT

+ 10?0, ® = HP
(d - 11 (d
&Q():u &2
H
e.g. < . < q
1D = (— % —A =
) = (VX)) |

= o S0) = (0,0) + (0. 7)

UXVLU(X)) +20112) 22 = (X?) — (X)?




Action and variational approach

e Quadratic MF'G are variational systems
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Action and variational approach

e Quadratic MF'G are variational systems

T MO.2

4

—%W.V@ + {Uo + %Fcb] F<I>]

e Noether theorem: Energy is conserved
po® g 2
E = / dx [——VI‘.V@ + =(I'®)* + UOFQD]
R

Ekin Eint Jpot

|::> — o~ = 1D = —— D =
pint T T g ’ glmo




Solitons and integrability in (1+1)D

[Bonnemain, Gobron, Ullmo (2021)]
e In (1+1)D, if Uy = 0: NLS and MFG are integrable.

e [.ax connection

0U — 0,V +[U, V] =0

A _
U:&E(Z (I’A) , V:me(""eq’r af“q’)—w

r -3 0,  —k. BT

e Poisson bracket and infinite hierearchy of conservation laws

0F oG 0F 0G
FG\ = ol Al _

e Soliton solutions

U(z,t) = 2bsech [2b(z + dat — z)] eF2loH2(@" =6)t+0o]




Back to our model of pedestrian dvnamics

Numerical implementation

Propagation :

Assume initial m'™ (x, t)
( 4

(eg = const) i —uo0,® = RO A + (Uy + gm™)®
4 E 4
2 Ko in
Solve for ®(x, t)
no
4 Self consistent equation :
O min = mOout ? t _
I = — y 3 . m(x,t) = ['(x,t)P(x,t) = m"(x,t)
mo%(xt)= ®T

! i

yes

Solve for I'(x, t) forward




Back to our model of pedestrian dynamics

Z
Numerical implementation

Assume initial m'™ (x, t) 1
(eg = const)

Solve for ®(x, t)

backward [®(x,T) = 1] Ny
no
A

CDO m m out ?
Lo =200 = -2
- mo%(xt)= ®T

Solve for I'(x, t) forward L




NB : exact symmetry for
ergodic case

Ergodic vs time dependent
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Characteristic length and velocity scales

Intruder Pedestrians
e Radius: R e Healing length: & = /|uc?*/2gmy|
e Velocity: v e “Sound velocity”: c; = +/|gmo /24|

Up to a scaling factor, solutions of the (ergodic) MFG equations
depend only on &/R and ¢ /v.




Csg > U

y <3 S >3

c length and velocity scales

Up to a scaling factor, solutions of the (ergodic) MFG equations
G &

depend only on £/R and ¢, /v.

Characteristi




Comparison to experiment

——— A s

Good qualitative
agreement.

Does better than the other

models.

Cannot claim quantitative

agreement.




Not limited to obstacle avoidance [Bonnemain et al. PRE (2023)]
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Discounted Mean-Field Games

[Butano, Appert-Rolland, Ullmo (2023)]
e Add a discount factor

T
E [/ (g(aZ)z N gm(X; 8) — UO(X; — Vt))ev(t_s)ds -+ CT(XZ})B’Y@_T)
t




Discounted Mean-Field Games

[Butano, Appert-Rolland, Ullmo (2023)]
e Add a discount factor

T
E [ / (E(ai)2 — gm(Xy, s) = Up(X; — Vﬂ)fﬂ(t_s)ds +ep(Xi)er =)
t
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trians are discrete entities. Their rationality may also be an issue.




Conclusions

MF'G reproduce qualitatively well the intruder experiment.

Even in its simplest form does better than models found in commercial
softwares (at least in this configuration).

But...

We cannot yet pretend to quantitative accuracy.

MFEG will struggle to address features associated with the fact that pedes-
trians are discrete entities. Their rationality may also be an issue.

And thankfully...
MFG is versatile.

Room for improvement (e.g. congestion |[Lachapelle, Wolfram (2011)],
discount factor, more accurate interaction potential, feedback on the in-
truder...).
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