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1 Introduction
At the end of the last century, a new field of mathematics began to emerge : Game

Theory.[23] This theory aims to describe strategic interactions between rational agents. It
finds applications in various disciplines, including social science [1], finance [13], systems
science, engineering [18], and economics. However, when dealing with a large number of
agents whose behavior is subject to uncertainty described by a Langevin’s equation, the
complexity of the equations can become overwhelming.

Fortunately, during the same period, Statistical Physics discovered a powerful tool to simplify
complex equations called the mean field approximation. By incorporating this approximation
from Physics into the intricate equations of Game Theory, the field of Mean Field Games
was born. Initially introduced by mathematicians Jean-Michel Lasry and Pierre-Louis Lions,
this theory has recently generated significant excitement. In this report, we aim to introduce
readers to this emerging field and explore the potential outcomes of applying perturbative
methods to problems in mean field games.

2 State of Art

2.1 Prerequisites

2.1.1 Introduction to Game theory

Game Theory is a modern framework used to describe the process of strategic optimiza-
tion. The term "strategic" indicates that each participant referred to as an agent or player,
seeks to solve an optimization problem influenced by the actions or strategies of other par-
ticipants. As the number of interactions increases, the complexity escalates, necessitating a
clear and precise definition of what constitutes a solution to the optimization problem.[22]

Different types of games exist and the game that we are going to play is :
— non-cooperative : agents focus on individual gains rather than look for a collective

greater pay-off.
— sequential : strategy of each player can change over time.
— rational : agents are able to solve optimization problems and follow their strategy wi-

thout psychological bias.

In order to better visualize what these rules could mean, let’s see the basic example of a
game with two agents. The most famous one is the prisoner’s dilemma described by William
Poundstone in his book[24] :

Two members of a criminal gang, A and B, have been apprehended and are now imprisoned
separately. Each prisoner is in solitary confinement without any means of communication
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with their partner. The primary accusation carries a ten-year prison sentence, but the police
lack sufficient evidence for a conviction. Instead, they plan to sentence both prisoners to
two years in prison on a lesser charge. However, they present each prisoner with a moral
dilemma : If one of them confesses to the principal charge, thus betraying the other, they
will receive a pardon and be released, while the other will bear the full sentence of ten years
instead of just two years for the lesser charge.

This leads to four different possible outcomes :
— A : If A and B both remain silent, they will each serve the lesser charge of 2 years in

prison.
— B : If A betrays B but B remains silent, A will be set free while B serves 10 years in

prison.
— C : If A remains silent but B betrays A, A will serve 10 years in prison and B will be

set free.
— D : If A and B both betray the other, they will share the sentence and serve 5 years.

It is assumed that both players lack loyalty towards each other and possess a clear unders-
tanding of the dynamics of this game. The dilemma arises from the fact that mutual betrayal
leads to a worse outcome compared to mutual cooperation (resulting in a combined sentence
of 10 years instead of 4). However, from a self-interested perspective, cooperating appears
irrational. Presented in this manner, betraying always results in a better payoff than remai-
ning silent, regardless of the other player’s decision. If B betrays A, it is logical for A to
retaliate and betray B, as facing a conviction for 5 years is preferable to 10 years.
And if B stays silent, A should still betray B as going free is better than serving 2 years.
Because of this, betraying is called a dominant strategy and the situation where both priso-
ners betray the other is referred to as a Nash Equilibrium.

This canonical example of a game is a perfect illustration of a non-cooperative, non-sequential,
and rational game.

In the realm of Game Theory, solutions refer to predictions regarding the strategies that
players will adopt and the resulting outcome of the game. Naturally, the outcome of the
game can vary depending on the level of rationality exhibited by the players, as defined
within the framework of game theory. This variability has led to the development of various
solution concepts, with the Nash Equilibrium concept being the most commonly employed.

The Nash Equilibrium concept assumes that players will select their strategies in a man-
ner that leads to a state known as Nash Equilibrium.[28]

Consider a non-cooperative game with N rational players. Let si be a strategy adopted by
player i from a compact metric space Si in order to optimize a cost function ci, continuous
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and real-valued on
∏N

j=1 sj. A Nash Equilibrium is then a N-tuple (s̄1, . . . , s̄N) ∈
∏N

j=1 Sj

such that, for any i = 1, . . . , N :

ci (s̄1, . . . , s̄N) ≤ ci
Ä
si, (s̄j)j ̸=i

ä
, ∀si ∈ Si

Indeed, in a Nash Equilibrium, no player has a motivation to unilaterally deviate from their
chosen strategy since such a change would lead to a higher cost or a suboptimal outcome for
that player. It represents a stable state where each player’s strategy is the best response to
the strategies chosen by the other players, given their rationality and knowledge of the game.

However, it is indeed important to acknowledge that Nash Equilibrium is not always present
in every game, and there can be situations where multiple Nash Equilibria exist. Despite these
limitations, Nash Equilibrium remains a widely employed and reasonable solution concept
for analyzing a broad range of games. In our discussion, we will assume that the games we
consider have at least one Nash Equilibrium to facilitate our analysis.

2.1.2 Differential games

In N -players differential game, each player (assumed to be rational) is characterized by
a state vector

−→
X i

t ∈ Rn representing their current state, and their strategy ait, which is
dynamically adjusted as the game unfolds. To capture the inherent uncertainty in a player’s
decision-making process, one can model their behavior using Langevin dynamics.

d
−→
X i

t =
−→a i

tdt+ σid
−→
W i

t (1)

In this context,
−→
W i

t represents a Gaussian white noise process that is independent of
−→
W j ̸=i

and has an amplitude of 1. Each player’s objective is to optimize a cost functional cit that
takes into account the behavior of every other player in the game. The strategies chosen by
the players influence the dynamics of the game and impact the overall cost incurred by each
player.

cit
[−→a 1, . . . ,−→a N

] Ä−→
X 1

t , . . . ,
−→
XN

t

ä
= E

ñˆ T

t

(
ci(

−→
X i

τ ,
−→
aiτ )− V i

Ä−→
X 1

τ , . . . ,
−→
XN

τ

ä)
dτ + ciT

Ä−→
X 1

T , . . . ,
−→
XN

T

äô
— with E the average on the noise.
— T is the time at which the game ends.
— the mobile cost ci strictly convex on ai (the greater the drift, the more expensive it is

to increase it). The mobile cost represents how much a strategy is expensive to realize.
— V represents the environmental gain, which can be understood as a measure of the

overall benefit obtained from the controlled dynamical system.
e.g. : a well potential that favors players located in a specific zone of the space. In a
realistic situation, people at a concert want to be in the front of the scene.
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— cT represents the terminal cost, which represents the cost associated with concluding
the control process in a particular configuration or state. This terminal cost is incurred
at the final time T and is taken into account when evaluating the overall performance
or optimization of the system.
e.g. : In the case of the well potential explained above, if the terminal cost associated
with finishing in this zone is too high, you will observe that close to the end of the
game, all players will leave the zone because of this cost.

In my research, I have specifically considered cost functions that are based on the square of
the control parameter.

If we postulate all players have quadratic running cost the cost functional become :

cit
[−→a 1, . . . ,−→a N

] Ä−→
X 1

t , . . . ,
−→
XN

t

ä
= E

ñˆ T

t

Å
µi

2

(−→a i
τ

)2 − V i
Ä−→
X 1

τ , . . . ,
−→
XN

τ

äã
dτ + ciT

Ä−→
X 1

T , . . . ,
−→
XN

T

äô
— where µi is a constant.

It is worth noting that a natural correspondence can be observed between the quadratic
term and the kinetic energy in a physical system. In this analogy, the faster you run, the
more energy it requires to increase your speed. Similarly, when deviating from the optimal
strategy in a game, the cost of moving further away from that strategy increases.

2.1.3 Interlude on optimal control

Optimal Control is a discipline within applied mathematics that deals with the analy-
sis of dynamic systems capable of being influenced and controlled to optimize a particular
objective or goal.[8] It can be seen as a contemporary extension of the well-established field
of Calculus of Variations, which finds extensive applications in physics. Given the inherent
link between optimization and Game Theory, Optimal Control forms a strong basis for the
development of Mean Field Games (MFG) theory. The principles and techniques of Opti-
mal Control play a vital role in analyzing and comprehending the dynamics and strategies
inherent in MFGs.

Let us consider a system specified by its state variable
−→
X ∈ Rd which evolves according

to Langevin dynamics :
d
−→
X t =

−→a tdt+ σd
−→
W t (2)

where −→a is the control parameter, σ a constant and
−→
W a Gaussian white noise of variance

one.
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We want to control (i.e. find the proper dynamics for −→a ) so that the following cost function
is minimized :

c[−→a ](
−→
X, t) = E

ñˆ T

t

(µ
2
(−→a τ )

2 − V
Ä−→
X τ

ä)
dτ + cT

Ä−→
X T

äô
(3)

— where µ is a constant.
In order to find the Optimal Control parameter −→a ∗, let us first introduce the value

function u as the optimal cost function

u(
−→
X, t) ≡ inf−→a

c[−→a ](
−→
X, t) (4)

To determine the value of u and establish its connection to −→a ∗, we employ the concept
of dynamic programming, specifically Bellman’s optimality principle [3]. This principle is a
fundamental concept in dynamic programming that allows us to solve optimization problems
by breaking them down into smaller subproblems.

"An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state re-
sulting from the first decision."

This means the computation of u can be simplified by discretizing the problem and op-
timizing on infinitesimally small time frames.

On the interval [t, t+ dt] we then have the relation :

u(
−→
X , t) = inf−→a

E

ññˆ t+dt

t

(µ
2
(−→a τ )

2 − V
Ä−→
X τ

ä)
dτ

ô
+ u(

−→
X + d

−→
X , t+ dt)

ô
(5)

which is called the Bellman’s equation. The dynamics of
−→
X being defined through Lan-

gevin equation, u(
−→
X + d

−→
X , t + dt) can be expanded to first order in dt using Itô’s Lemma

[15] :

E[u(
−→
X + d

−→
X , t+ dt)] = u(

−→
X , t) +

ï
∂tu(

−→
X , t) +−→a ·

−→
∇u(

−→
X , t) +

σ2

2
∆u(

−→
X , t)

ò
dt (6)

which, combined with Bellman’s equation (5) yields Hamilton-Jacobi-Bellman’s (HJB) equa-
tion :

∂tu+
σ2

2
∆u+ inf−→a

[µ
2
(−→a )2 +−→a ·

−→
∇u

]
= V (7)

The optimization of the third term in the Hamilton-Jacobi-Bellman’s (HJB) equation (7)
leads to the relation −→a ∗ = −

−→
∇u
µ

.The negative sign in the relation −→a ∗ = −
−→
∇u
µ

indicates that
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the optimal control action is in the opposite direction of the gradient of the value function.

This means that the control action should be chosen to move in the direction that decreases
the value function the fastest. Then HJB’s equation becomes :

∂tu+
σ2

2
∆u− 1

2µ
∥
−→
∇u∥2 = V (8)

It is important to note that the HJB’s equation is formulated in a backward-in-time
manner. This is indicated by the sign in front of the diffusive term. In this formulation, the
boundary condition for the value function is specified at the final time T , which marks the
end of the optimization process.

u(
−→
X , T ) = cT (

−→
X) (9)

and the solution to HJB’s equation is then constructed step by step from there.

This concludes this introduction to Optimal Control, we now have the background to pursue
our journey.

2.1.4 Return on differential games

If we postulate all players have quadratic running costs as mentioned at the end of
Section 2.1.2 and because we consider rational players, we look for a Nash Equilibrium(−→a 1∗, . . . ,−→a N∗

)
as the solution of this optimization problem.

ci
[−→a 1∗, . . . ,−→a N∗

]
≤ ci

[−→a 1∗, . . . ,−→a i, . . . ,−→a N∗
]

∀i = 1, . . . , N and ∀−→a i (10)

In this context, the value function ui
t may be defined as the optimal cost of player i if

every other player follows their optimal strategy :

ui
t

Ä−→
X 1

t , . . . ,
−→
XN

t

ä
= inf−→a i

E

ñˆ T

t

Å
µi

2

(−→a i
τ

)2 − V i
Ä−→
X 1

τ , . . . ,
−→
X i

τ , . . .
−→
XN

τ

äã
dτ +ciT

Ä−→
X 1

T , . . . ,
−→
X i

T , . . . ,
−→
XN

T

äó
and evolves according to the following HJB’s equation [19] :

∂tu
i +

σ2
i

2

N∑
j=1

∆xjui −
∑
j ̸=i

1

µj

Ä−→
∇xjuj

ä
·
Ä−→
∇xjui

ä
− 1

2µi

∥∥∥−→∇xiui
∥∥∥2

= V i (11)

with the terminal condition :

ui
T

Ä−→
X 1

T , . . . ,
−→
XN

T

ä
= ciT

Ä−→
X 1

T , . . . ,
−→
XN

T

ä
(12)

As the number of players in a differential game grows, the complexity of the problem es-
calates significantly due to the increasing number of interrelated stochastic equations. This
growth presents challenges in terms of analyzing and finding solutions for the game, making
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it computationally intractable. Consequently, there is a demand for a novel framework that
can effectively handle a large number of players in a more tractable manner.

To tackle this challenge, the field of Mean Field Games (MFG) has emerged as a promi-
sing framework. MFG offers a tractable approximation of the behavior exhibited by a large
population of interacting players. It achieves this by introducing simplifying assumptions that
enable the analysis of game dynamics at a mean field level. In this approach, the individual
behaviors of players are replaced by an aggregate behavior, allowing for more manageable
analysis and solution methods.

2.2 Mean Field approach

2.2.1 Introduction to MFG

Mean Field Games were first introduced by P.-L. Lions and J.-M. Lasry [20] [21] and
further developed by M. Huang, R. P. Malhamé, and P. E. Caines [17]. They were desi-
gned as a framework to tackle non-atomic differential games involving a significant number
of identical players. The concept of mean field, drawing inspiration from its counterpart in
physics [14], plays a central role in MFG by simplifying the analysis. Within this framework,
agents are assumed to be insensitive to the individual choices of others but are influenced
by an aggregated quantity that represents the decisions of all players.

Various approaches to Mean Field Games have been extensively investigated in recent years.
In this report, my primary focus will be on the deterministic Partial Differential Equation
(PDE) formulation initially proposed by P.-L. Lions and J.-M. Lasry.

To formulate the Mean Field Games equations, we begin by incorporating the aforemen-
tioned assumptions into the framework of differential games described in section 2.1.4. We
consider a group of identical players who share common characteristics such as σi = σ,
µi = µ, V i = V , and ciT = cT . The only differences among the players are their initial states
X i

0 and choice of strategy ait. Furthermore, we assume that the potential V and the terminal
cost cT experienced by an individual player i depend only on the collective behavior of all
players, which is represented by the empirical density :

m̃(x, t) =
1

N

N∑
j=1

δ
Ä
x−Xj

t

ä
(13)

Hence V
Ä−→
X 1

t , . . . ,
−→
XN

t

ä
≈ V [m̃] (X i

t) and cT
Ä−→
X 1

T , . . . ,
−→
XN

T

ä
≈ cT [m̃] (X i

T ).
As we consider a large number of players and assume that the fluctuations of the empiri-
cal density m̃ can be neglected, we can make use of the mean field approximation. In this
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approximation, we introduce a mean field m(x, t), which represents the average of the empi-
rical density over all realizations of the noise. Based on this mean field, we define the value
function for a particular player as in [10] :

u(x, t) = inf−→a
E

ñˆ T

t

(µ
2

(−→a i
τ

)2 − V i[m]
Ä−→
X i

τ

ä)
dτ + ciT [m]

Ä−→
X i

T

äô
(14)

This allows us to recast the differential game presented in section 2.1.4 into a one-body
optimization problem as described in section 2.1.2 while the agents essentially decouple. The
value function then verifies HJB’s equation (7) :®

∂tu+ σ2

2
∆u− 1

2µ
∥
−→
∇u∥2 = V [m]

u(x, T ) = cT [m](x)
(15)

We retrieve the same equation (8) of section 2.1.4 but now V depends on the mean field m.

Similar to the field of Physics, the introduction of a mean field allows for the decoupling
of players’ dynamics in Mean Field Games (MFG). However, it is crucial to ensure self-
consistency within the system. This can be achieved by acknowledging that when a suffi-
ciently large number of players adhere to Langevin dynamics (1), the density of players m
(which also serves as the mean field) can be effectively described using the Fokker-Planck
(FP) equation [25]. The FP’s equation provides a mathematical framework to capture the
evolution of the density of players as they interact and make decisions within the game.

∂tm+
−→
∇ · [m−→a ∗]−

σ2

2
∆m = 0 (16)

where −→a ∗ = − 1
µ

−→
∇u is the optimal control parameter according to HJB’s equation.

Considering an initial distribution of players m0(x) the MFG problem reduces to a system
of coupled (deterministic) PDE’s :

∂tu+ σ2

2
∆u− 1

2µ
∥
−→
∇u∥2 = V [m]

u(−→x , t = T ) = cT [m](−→x )

∂tm− 1
µ

−→
∇ · [m

−→
∇u]− σ2

2
∆m = 0

m(−→x , t = 0) = m0(
−→x )

(17)

In this formulation, the emphasis is placed on the mean field m(x, t) and the value function
u(x, t) as the primary unknowns, shifting away from individual strategies. It is notewor-
thy that the system exhibits an unconventional forward-backward structure. The Hamilton-
Jacobi-Bellman’s equation is derived from the terminal cost at the end of the game, while the
Fokker-Planck’s equation describes the evolution of the player distribution from its initial
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configuration.

The presence of mixed initial-final boundary conditions introduces new challenges in charac-
terizing solutions to MFG’s equations, both analytically and numerically. This aspect can
lead to dynamics that may deviate from typical physical scenarios. As a result, the ana-
lysis and numerical treatment of MFGs require innovative approaches to overcome these
challenges and accurately capture the complex dynamics of the system.

2.2.2 Existence of an ergodic state

In sufficiently long games, it is conceivable that there exists a time, which is distant from
both the beginning and the end of the game, where the solutions to the MFG’s equations
(17) become completely decoupled from the initial and final conditions. At this point, players
no longer need to remember their initial state or be concerned about the endgame, but can
still devise an optimal, potentially stationary, strategy.

In line with this notion, P. Cardaliaguet et al. [11] demonstrated that in the limit as T
approaches infinity, under the condition that the potential V [m](x) does not explicitly de-
pend on time (which we consider throughout this manuscript), and if the system is confined
in some manner (either through V or due to fixed spatial boundaries), there exists an ergodic
state such that : ß

m(−→x , t) ≃ m̄(−→x )
u(−→x , t) ≃ ū(−→x ) + λt (for 0 ≪ t ≪ T )

(18)

The constant λ can be determined through the normalization of m. This finding holds signi-
ficant importance as it provides a broad understanding of how a game will unfold, even if the
system of forward-backward equations (17) cannot be fully solved. It simplifies the problem
by eliminating the time dependence, allowing for a clearer analysis of the game dynamics.
Leading to the following system :{

λ+ σ2

2
∆ū− 1

2µ
∥
−→
∇ū∥2 = V [m]

1
µ

−→
∇ · [m̄

−→
∇ū] + σ2

2
∆m̄ = 0

(19)

3 Link with known physics
While the system of MFG’s equations (17) offers a notable simplification compared to

the differential games discussed in section 2.1.4, solving them still presents challenges. The
primary difficulty arises from the forward-backward nature of these equations, which is not
commonly encountered in physics and introduces its own complexities.

However, in the specific case of quadratic MFG, there are approaches available to refor-
mulate the problem into a more familiar framework for physicists. These alternative forms
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of the MFG’s equations (17) provide a different perspective and can potentially facilitate
the analysis and solution of the problem. In the ensuing discussion, I will explore these
alternative formulations of the MFG’s equations (17).

3.1 Nonlinear Schrodinger’s equation

The change of variable mentioned, which was initially introduced by O. Guéant as a
means to construct a monotonous discretization scheme [16], has been extensively discussed
by D. Ullmo, I. Swiecicki, and T. Gobron [30]. It serves as a gateway for physicists to delve
into the realm of Mean Field Games (MFG) and provides a framework that aligns with
their familiar approaches and techniques. The utilization of this change of variable aids in
addressing the challenges posed by the forward-backward structure of MFG equations and
allows for the application of methods more commonly employed by physicists. [29] [6]

Proceeding as in [30], one can make use of the classic Cole-Hopf transform on HJB equation
to obtain a standard heat equation :®

µσ2∂tΦ = −µσ4

2
∆Φ− V [m]Φ

u = −µσ2 logΦ
(20)

where this equation is constructed backward in time, similarly to the HJB’s equation, with
the terminal condition : Φ(x, t = T ) = exp [−cT (x)/µσ

2].

One can then perform a "hermitization" of equations (17) :®
µσ2∂tΓ = µσ4

2
∆Γ+ V [m]Γ

m = ΦΓ
(21)

this one being forward in time with initial condition Γ(x, t = 0) = m0(x)/Φ(x, 0).

Through these transformations the system of MFG’s equations (17) exhibits a mapping
onto the Non-linear Schrödinger’s (NLS) equation :®

iℏ∂tΨ = − ℏ2
2µ
∆Ψ− V [ρ]Ψ

iℏ∂tΨ∗ = ℏ2
2µ
∆Ψ∗ + V [ρ]Ψ∗ (22)

under the formal correspondence :
— µσ2 → ℏ.
— Φ(x, t) → Ψ(x, it) and Γ(x, t) → [Ψ(x, it)]∗.
— ρ ≡ ∥Ψ∥2 → m ≡ ΦΓ.
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The system of equations represented by (20) and (21) indeed exhibits differences when
compared to the Nonlinear Schrödinger’s (NLS) equation. Firstly, it retains the characteristic
forward-backward structure that is inherent in Mean Field Games (MFGs). This structure
distinguishes MFG’s from other equations encountered in physics.

Secondly, the functional space in which the solutions Φ and Γ reside differs from the ty-
pical functional spaces encountered in physics. As physicists, we are familiar with working
in various types of functional spaces, each with its own properties and challenges. In the
context of MFG equations, the choice of functional space introduces unique characteristics
and complexities that need to be carefully considered in the analysis and solution of the
equations.

The construction of Φ and Γ in the Mean Field Games’s equations specifies them as non-
periodic, positive functions, while Ψ is allowed to be complex-valued. These distinctions from
the Nonlinear Schrödinger’s equation are indeed noteworthy. However, it is important to re-
cognize that these differences do not diminish the significance of the mapping between the
two equations.

The NLS’s equation has been extensively studied in various fields, including non-linear op-
tics, Bose-Einstein condensation, and fluid dynamics. Over the years, numerous methods
have been developed to tackle the NLS’s equation, and many of these methods can be adap-
ted and applied to MFG models. This highlights the potential for leveraging the insights and
techniques from the study of NLS’s equations to enhance our understanding and analysis of
MFG models, as emphasized in [30].

Now our system looks like this :
−µσ2∂tΦ = µσ4

2
∆Φ+ V [m]Φ

µσ2∂tΓ = µσ4

2
∆Γ+ V [m]Γ

Φ(x, t = T ) = exp [−cT (x)/µσ
2]

m(−→x , t = 0) = m0(
−→x )

(23)

3.2 Action and conserved quantities

The alternative representations of Mean Field Games’s equations, as discussed earlier,
offer the advantage of enabling the application of various methods and concepts originally
developed in physics to study and characterize MFG problems. One notable aspect is the
introduction of the concepts of action and energy into the context of MFG. These notions,
widely utilized in physics, bring valuable insights and tools for analyzing and understanding
MFG systems. [4]

The concepts of action and energy are fundamental in physics and have been extensively
studied and applied in various physical systems. By incorporating these concepts into the
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study of MFG, we gain a deeper understanding of the dynamics and behavior of the system.
This cross-pollination of ideas between physics and MFG enriches the theoretical framework
and opens up new avenues for analysis and interpretation. [7]

The system of equations (23) can be seen as deriving from an action S defined as :

S[Γ, Φ] ≡
ˆ T

0

dt

ˆ
R

dx

ï
µσ2

2
(Γ∂tΦ− Φ∂tΓ) −

µσ4

2
∇Γ · ∇Φ+ U [m]

ò
(24)

where U [m] represents the functional anti-derivative of V [m], so its minimization yields
Schrodinger’s representation of MFG’s equations.®

δS

δΓ = 0
δS

δΦ = 0
⇔
®

µσ2∂tΦ = −µσ4

2
∆Φ− V [m]Φ

µσ2∂tΓ = µσ4

2
∆Γ+ V [m]Γ

The existence of an underlying action in MFG dynamics has a significant implication. Due
to the time translation invariance of the integrand in (24), the Noether theorem guarantees
the existence of a conserved quantity, analogous to energy in physical systems.

E =

ˆ
R

dx

ï
−µσ4

2
∇Γ · ∇Φ+ U [m]

ò
(25)

Continuing with the analogy to physical systems, it is indeed possible to interpret the first
term in each integrand, which depends on σ, as kinetic energy, while the term involving U
corresponds to potential energy. However, it is crucial to recognize that the interpretation of
these quantities differs in the context of social or engineering sciences compared to their tradi-
tional physical interpretation. In the context of MFG and related disciplines, these quantities
should primarily be understood as abstract quantities that serve to formally characterize a
problem.

4 Schelling Model

4.1 Historical context

The Schelling model is a social science model that aims to explain the phenomenon of
geographical segregation [27]. It shares some similarities with well-known physical models.
The model works as follows :

— We start with a square-based network where two different populations are randomly
distributed. There are also free spaces on the network.

— Each agent has a cost function that captures their preference for being surrounded
by similar individuals. The cost function increases when the proportion of neighbors
belonging to the same population falls below a certain threshold p ∈ [0, 1].

13



— Let na
i,j denote the number of neighbors of site (i, j) belonging to population a ∈

{−1, 1}. The cost function for an agent of population a at site (i, j) is given by :

cai,j =

Ç
p−

na
i,j

na
i,j + n−a

i,j

å
· θ
Ç
p−

na
i,j

na
i,j + n−a

i,j

å
(26)

where θ(x) is the Heaviside step function.
— At each iteration, unsatisfied agents, whose cost exceeds a certain threshold, are al-

lowed to move to a free site in the network. The movement aims to improve their
satisfaction by finding a neighborhood that better matches their preferences.

The Schelling model’s conclusion, supported by simulations and analysis, is that even with
relatively low preference thresholds (p), the system exhibits rapid convergence towards a
state of segregation. This means that populations tend to cluster in separate blocks rather
than being evenly distributed.

This finding has had a significant impact on contemporary sociological thinking. Prior to
Schelling’s work, the observation of geographical separation between communities often led
to the assumption that populations were inherently racist or had a strong preference for
homogeneity, actively seeking to avoid living near individuals from other populations. This
perspective often led to policies and interventions aimed at reducing social mixing and pro-
moting integration.

More generally, his work showed an inherent property of complex systems in a physical
sense. In his original article [27], Schelling wrote about such social experiments that "lead
to aggregate results that the individual neither intends nor needs to be aware of, results
that sometimes have no recognizable counterpart at the level of the individual". This is not
completely unknown for statistical physicists, it reminds of the famous formula from P.W.
Anderson "More is different".[2]

However and as Shelling’s stated in his paper, his explanation of segregation may be at
the third place for explaining why there is segregation, and many other factors like economic
segregation are dominant.

Schelling’s insights have prompted a rethinking of the causes and dynamics of segregation,
emphasizing the importance of systemic factors and the unintended consequences of indi-
vidual behavior. This has influenced discussions and approaches to urban planning, social
policy, and understanding of social dynamics in diverse communities.

In the next section, we will try to cast this model in a MFG formulation.
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4.2 Casting into an MFG model

With what we learned from the previous section we can generalize our system (17) in the
case of 2 populations interacting (i ∈ {−1, 1}) :

−∂tui −
σ2
i

2
∆ui +

1

µi

∇ui = Vi [m1,m2;x]

∂tmi −
1

µi

∇ ((∇u)mi) =
σ2
i

2
∆mi

(27)

and 
−ℏi∂tΦi =

ℏ2i
2µi

∆Φi + Vi [m1,m2;x]Φi

ℏi∂tΓi =
ℏ2i
2µi

∆Γi + Vi [m1,m2;x]Γi

(28)

The first problem we face is that of choosing the cost function. We could simply adapt
the function given in (26), but a potential of the form :

Vi [m1,m2, ;x] =

Å
p− mi(x)

mi(x) +m3−i(x)

ã
· θ
Å
p− mi(x)

mi(x) +m3−i(x)

ã
(29)

does not allow us to simply write an action from which our system is derived. In this case,
a numerical approach is preferred, however, we chose to work in an analytical framework.
Hence we will adapt this function to a simpler one.

4.3 Limitation of the model

To simplify calculations and to get closer to a physical system, we will simplify the model :
we will consider that agents aim to minimize the following potential :

Vi [m1,m2, ;x] = −gm3−i(x) (30)

/ with g a coupling constant.

In a sociological sense, this model is less interesting : the agents openly avoid strangers,
and there’s nothing revolutionary to be expected from large-scale segregation in such a sys-
tem. However, this problem provides us with an example of what perturbative treatment
can shed light on a Mean-Field-Game model.

The system is now : 
−ℏi∂tΦi =

ℏ2i
2µi

∆Φi − g (Φ3−iΓ3−i)Φi

ℏi∂tΓi =
ℏ2i
2µi

∆Γi − g (Φ3−iΓ3−i)Γi

(31)
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4.4 Nondimensionalization

To simplify the system of equations (30) and bring it into a dimensionless form, we can
introduce dimensionless units.[7] In analogy with Bose-Einstein condensates, we can define
the healing length as v = µσ4

|g| , which represents the typical distance on which interactions

balance quantum pressure (or diffusion in our case). Additionally, we define τ = 2µ2σ6

g2
as a

typical time scale as in [5].

Let’s focus on one dimensional case. By introducing dimensionless variables t′ = t
τ

and
x′ = x

v
, we can rewrite (30) in a simplified form using these dimensionless coordinates :ß

−∂t′Φ = ∂x′x′Φ− 2vmΦ
∂t′Γ = ∂x′x′Γ− 2vmΓ

(32)

In this form, the healing length v appears as the only relevant parameter.

The above representation [Equations. (32) with all "primes" dropped] will be used for the
rest of this paper.

5 Research work
The work presented in this section is an extension of a previous work conducted by Gabriel

Rocheman in his report. [26]. In our study we introduce what we call a time discount in the
value function, we will see how this will change the final results that Gabriel found in his
internship.

5.1 The closer the clearer

The idea is to introduce a preference for a short time range, the player will see clearly
in a close time range. To do so we need to add a discount factor under our cost functional
integral. The new cost functional is now :

u(x, t) = inf−→a
E

ñˆ T

t

(µ
2
(−→a τ )

2 − V [m]
Ä−→
X τ

ä)
eγ(t−τ)dτ + cT [m]

Ä−→
X T

ä
eγ(t−T )

ô
(33)

Where γ is a constant discount factor.

We will follow the same road we have followed in section 2.2.1 to obtain the Hamilton-
Jacobi-Bellman Fokker- Planck’s system (HJB-FP).

Denoting :
L(−→x , τ)[m] =

µ

2
(−→a (τ)2 − V [m](−→x , τ))
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Then we can write

u(−→x , t) = inf−→a

®ˆ T

t

L(−→x , τ)[m]eγ(t−τ)dτ + eγ(t−T )cT (−→x T )

´
= inf−→a

E

®ˆ t+dt

t

L(−→x , τ)[m]eγ(t−τ)dτ + e−γdt

Çˆ T

t+dt

L(−→x , τ)[m]eγ(t+dt−τ)dτ + eγ(t+dt−T )cT (−→x T )

å´
Then we use Bellman optimal principle [3] to write :

u(−→x , t) = inf−→a

[
L(−→x , t)dt+ e−γdtu(−→x +−→a dt, t+ dt)

]
= inf−→a

ï
L(−→x , t)dt+ e−γdt

Å
u(−→x , t) +

d

dt
u(−→x , t)dt

ãò
We can use Ito’s chain rule to calculate the total derivative of u and by taking the limit dt
→ 0, expanding the exponential term :

u(−→x , t) = inf−→a

ß
L(−→x , t)dt+ (1− γdt)

ï
u(−→x , t) + dt

Å
∂tu+−→a ·

−→
∇u+

σ2

2
∆u

ãò™
Then we keep order at first order in dt and simplifying we get :

0 = ∂tu− V [m] +
σ2

2
∆u− γu+ inf−→a

{µ

2
−→a 2 +−→a ·

−→
∇u

}
Which is what we will call the discounted HJB’s equation.Finally by the same minimization
done in section 2.1.3 and because Langevin’s equation :

d
−→
X t =

−→a tdt+ σd
−→
W t

did not change, hence the associated FP’s equation neither, we can write the discounted
HJB-FP’s system : 

∂tu = −σ2

2
∆u+ 1

2µ
(
−→
∇u)2 + γu+ V [m]

u(−→x , t = T ) = cT (
−→x )

∂tm = σ2

2
∆m+ 1

µ

−→
∇ · (m

−→
∇u)

m(−→x , t = 0) = m0(
−→x )

(34)

5.2 Discounted ergodic state

As we saw, we can have an ergodic state, and here there is still one but a little more
general with the addition of the time discount. We thus can write :

u(−→x , t) ≃ ue(−→x ) + f(t) (35)

To determine f we will proceed by looking at the known γ = 0 case. [9]
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For the non discounted problem, meaning γ = 0, such an ergodic state has been extensi-
vely studied, see [12], and it has been shown that fγ=0(t) = −λt, where λ is a constant.

The scope of this section is to study the ergodic state of an MFG for a generic γ.

Our hypothesis is that, in the case of γ > 0, the equation(35) defining the ergodic value
function is still valid, thus, by plugging it in (19) we obtain :

σ2

2
∆ue − 1

2µ

Ä−→
∇ue
ä2

+ f ′(t)− γ (ue(−→x ) + f(t)) = V [m] (36)

then, in order to get rid of any explicit time dependence in the equation, and therefore in
ue(−→x ), we impose that f ′(t) = γf(t)− λ, which gives f(t) = keγt + λ

γ
, that we plug back in

(35) to obtain that, for intermediate times, the ergodic state of the value function is :

u(−→x , t) ≃ ue(−→x ) + keγt +
λ

γ
. (37)

In order to fix k, we turn our attention to the behavior of the ergodic state for small values
of the discount factor, i.e. when γ → 0. In this case, we can write :

u(−→x , t) ≃ ue(−→x ) + k + kγt+
λ

γ
(38)

By taking k = −λ/γ one recovers fγ=0(t) = −λt. The ergodic state of the value function for
the discounted MFG is therefore :

u(x, t) ≃ ue(x) +
λ

γ

(
1− eγt

)
= ue(x) + f(t), 0 << t << T (39)

The equations followed by the position dependent part of the ergodic state both for the
density and the value function for a general MFG model with a potential V not explicitly
depending on time are then :

σ2

2
∆ue − 1

2µ

Ä−→
∇ue
ä2

− γue(x)− λ− V [me] = 0

σ2

2
∆me +

1

µ

−→
∇ ·
Ä
me−→∇ue

ä
= 0

(40)

5.3 Cole Hopf transform

Let’s return to our discounted system (34). Now we can apply a Cole Hopf transform and
we land on the following system on (Γ, Φ) :®

µσ2∂tΦ = −µσ4

2
∆Φ− V [m]Φ+ γµσ2Φ logΦ

µσ2∂tΓ = µσ4

2
∆Γ+ V [m]Γ− γµσ2Γ logΦ

(41)
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We place ourselves in the situation where V=-gm, we obtain :
µσ2∂tΦ = −µσ4

2
∆Φ+ gΓΦ2 + γµσ2Φ logΦ

µσ2∂tΓ =
µσ4

2
∆Γ− gΦΓ2 − γµσ2Γ logΦ

(42)

and with the same "nondimensionnalization" process explained in section 4.4 we get :®
∂tΦ = −∆Φ+ 2vmΦ+ γΦ log(Φ)

∂tΓ = ∆Γ− 2vmΓ− γΓ log(Φ)
(43)

We can easily extend the previous equations (43) to a 2 populations system :®
∂tΦi = −∆Φi + 2v (Φ3−iΓ3−i)Φi + γΦi log(Φi)

∂tΓi = ∆Γi − 2v (Φ3−iΓ3−i)Γi − γΓi log(Φi)
(44)

with i=1,2.

5.4 Homogeneous Solution

Now our goal is to study the stability of solutions of (44) with a perturbative treatment.
We want to focus on an ergodic solution far from the edges of the game : u(−→x , t) ≃ ue(−→x )+
f(t) and m = me. Now proceeding to a Cole Hopf transformation on this :

Φ = e−u/µσ2

= e−ue/µσ2

e−f(t)/µσ2

= Φee−f(t)/µσ2

and
Γ = Γeef(t)/µσ

2

with ℏ = µσ2

Now as we will make a simplifying hypothesis, that u is homogeneous hence ue does not
depend on x. Then we can write Φ = Ae−f(t)/ℏ and Γ = Bef(t)/ℏ. Considering the condition
m = ΓΦ then we must have A = B =

√
m.

In this order, we postulate a couple of homogeneous solutions :®
Φi =

√
mie

−f(t)/ℏi

Γi =
√
mie

f(t)/ℏi
(45)
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— With ℏi = µiσ
2
i

Injecting these in our system (44) leads to the following dispersion relation :

2νm3−i +
γ

2
log(mi)−

λ

ℏi
= 0 (46)

Leading to the following expression for mi :

mi = e
2λ
γℏi e−4νm3−i/γ

5.4.1 Perturbative treatment

We now want to perturb the solution, denoting by :®
Φp = (

√
m+ δΦ)e−f(t)/ℏ = Φ+ δΦe−f(t)/ℏ

Γp = (
√
m+ δΓ)ef(t)/ℏ = Γ+ δΓef(t)/ℏ

(47)

the perturbed solutions, with δΦ et δΓ small perturbation. We will restrict ourselves to
order 2 in δΦ and δΓ)

Let’s inject these formulations into our system (44) :

— ∂tΦ
p
i = ∂tΦi + ∂t(δΦi)e

−f(t)/ℏi − f ′(t)
ℏi δΦie

−f(t)/ℏi .

— −∆Φp
i = −∆Φi +

−→
k 2δΦie

−f(t)/ℏi .

— 2νΓp
3−iΦ

p
3−iΦ

p
i = 2νΓ3−iΦ3−iΦi + 2νΓ3−iΦ3−iδΦie

−f(t)/ℏi + 2νΓ3−iΦiδΦ3−ie
−f(t)/ℏ3−i

+ 2νδΓ3−iΦ3−iΦie
f(t)/ℏ3−i +O(δΦ2

i ).

— γΦp
i logΦ

p
i = γΦi log(Φi) + γδΦie

−f(t)/ℏi + γδΦie
−f(t)/ℏi log(Φi) +O(δΦ2

i ).

We repeat the same method for Γ.

Then by using the fact that Φ and Γ are solution of system (44) and injecting the dis-
persion relation (46), we obtain the following matrix equation : ∂t

−→
δ = A ·

−→
δ with

−→
δ =

(δΦ1, δΓ1, δΦ2, δΓ2)
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And

A =

á −→
k 2 + γ 0 2ν

√
m1m2 2ν

√
m1m2

−γ −
−→
k 2 −2ν

√
m1m2 −2ν

√
m1m2

2ν
√
m1m2 2ν

√
m1m2

−→
k 2 + γ 0

−2ν
√
m1m2 −2ν

√
m1m2 −γ −

−→
k 2

ë
(48)

Let denote θ = 2ν
√
m1m2 then :

A =

á −→
k 2 + γ 0 θ θ

−γ −
−→
k 2 −θ −θ

θ θ
−→
k 2 + γ 0

−θ −θ −γ −
−→
k 2

ë
(49)

Now we want to know if the perturbed solutions are stable, this is equivalent to
−→
δ → 0

when t → inf. With Matematica, we can find the eigenvalues of A.

We can see that we are recovering the same matrix as in [26] in the limit γ → 0 which
is reassuring.

Here they are :



λ1 =
γ

2

Ñ
1−

√
1 +

4
−→
k 2

γ
(1 +

−→
k 2

γ
)− 8

−→
k 2θ

γ2

é
λ2 =

γ

2

Ñ
1−

√
1 +

4
−→
k 2

γ
(1 +

−→
k 2

γ
) +

8
−→
k 2θ

γ2

é
λ3 =

γ

2

Ñ
1 +

√
1 +

4
−→
k 2

γ
(1 +

−→
k 2

γ
)− 8

−→
k 2θ

γ2

é
λ4 =

γ

2

Ñ
1 +

√
1 +

4
−→
k 2

γ
(1 +

−→
k 2

γ
) +

8
−→
k 2θ

γ2

é
We can plot these 4 eigenvalues to better visualize their behavior for different values of

γ and θ.
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Figure 1 – Plot of eigenvalues of A for γ = θ = 1
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Figure 2 – Plot of eigenvalues of A for γ = 1 and θ = 100

5.4.2 Physicist intuition

The eigenvalues shown in Figure 1 may seem surprising at first glance. In classical physi-
cal models, a large positive eigenvalue indicates strong mode growth. However, in this case,
there is no value of

−→
k for which the eigenvalues are singular or maximal, which would sug-

gest a preferred
−→
k . On the contrary, interpreting the graph according to the physicist’s usual

intuition, we would expect to see four modes : two decreasing modes and two exponentially
growing modes, whose growth seems to increase as

−→
k becomes large (i.e. for smaller wave-
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Figure 3 – Plot of eigenvalues of A for γ = 1000 and θ = 1000

lengths).

To understand this phenomenon further, it is necessary to take the analysis a step further.
It seems unlikely that the system favors disturbances with infinitely small wavelengths.

5.5 Decoupling of initial and final perturbations

Let’s take a qualitative line of reasoning to recover our intuition of the problem.

Intuitively, we can imagine that the smaller the wavelength of the perturbation (i.e. the
larger

−→
k ), the greater the influence of noise, as in a scattering problem. So, beyond a certain

value of
−→
k , noise will attenuate our perturbation, and the homogeneous solution will be

stable. However, the final condition introduces a certain complexity : how does the stability
of the homogeneous solution manifest itself in this case ?

Given the form of the equation, we expect to observe exponential attenuation when the
solution is stable, whether for the final or initial conditions. Consequently, the final pertur-
bation, δΦi|t=T , should exhibit exponential attenuation backward (i.e. exponential growth
from the past to the future). We can therefore imagine that if T is not too small, δΦi|t=0 will
be close to zero. Similarly, the initial condition, δΓi|t=0 + δΦi|t=0 ≃ δΓi|t=0 will be attenuated
toward the future.

The problem is then greatly simplified : we have an initial condition on the δΓi attenuated
towards the future and a final condition on the δΦi, attenuated towards the past, so the δΦi
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are negligible when the δΓi are not and vice versa. We should therefore observe a decoupling
of the problem on degrees of freedom propagated toward the future and those propagated
toward the past.

5.6 Stability analysis

5.6.1 Eigenvalues of the decoupled system

Algebraically, this decoupling translates into the separation of our vector space into two
subspaces EΦ = Vect{(1, 0, 0, 0), (0, 0, 1, 0)} and EΓ = Vect{(0, 1, 0, 0), (0, 0, 0, 1)} : we ne-
glect the A matrix elements that couple the δΦi to the δΓj.

After making the corresponding simplifications in the linear system, we obtain two sub-
systems of two equations, each with a linear coupling : one for the δΦi and one for the δΓi,
with the respective matrices AΦ and AΓ :

AΦ =

Ç −→
k 2 + γ θ

θ
−→
k 2 + γ

å
(50)

AΓ =

Ç
−
−→
k 2 −θ

−θ −
−→
k 2

å
(51)

Let’s write explicit equations : {
∂t
−→
δΦ = AΦ

−→
δΦ

∂t
−→
δΓ = AΓ

−→
δΓ

(52)

Diagonalizing AΦ means projecting onto (1, 1) and (1,−1), i.e. taking the sum and diffe-
rence of each perturbation. In other words, it means separating the part of the perturbation
that is in phase (δΦ1 = δΦ2) from the part that is in phase opposition (δΦ1 = −δΦ2).

Eigenvalues of AΦ and AΓ are :{
vΦ± =

−→
k 2 + γ ± θ

vΓ± = −
−→
k 2 ± θ

(53)

Looking at (52), to have δΦ attenuated towards the past, vΦ must be positive and δΓ
attenuated towards the future, vΓ must be negative.

We now want to check that the eigenvalues are indeed verifying those conditions :
1. Perturbation in phase :

Associated eigenvalues : vΦ+
=

−→
k 2 + γ + θ and vΓ− = −

−→
k 2 − θ

It is trivial that vΦ+
is positive and vΓ− is negative, so this is consistent.
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2. Perturbation in phase opposition :
Associated eigenvalues : vΦ− =

−→
k 2 + γ − θ and vΓ+

= −
−→
k 2 + θ

This is more subtle we need to examine different sub cases :
— If vΦ− > 0 then

−→
k 2 > θ − γ

hence vΓ+
= θ −

−→
k 2 < γ.

Unfortunately we have vΓ+
< 0 only if γ = 0.

But the reciprocal proposition is not true :
If vΓ+

< 0 then
−→
k 2 > θ > θ − γ so vΦ− > 0,

and we are consistent again.

— If vΦ− < 0 then
−→
k 2 < θ − γ < θ,

hence vΓ+
> 0.

Perturbation now grows and we are not consistent again.

We expect to be able to distinguish two regimes : above a certain value of
−→
k 2, initial and

final disturbances decouple and attenuate, whereas below, disturbances may increase.

We’re now going to calculate precisely the different evolution regimes of a perturbation
of a certain wave number, which we identify with the parameter

−→
k 2.
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5.6.2 Eigenvalues of A

We recall the eigenvalues of A :



λ1 =
γ

2

Ñ
1−

√
1 +

4
−→
k 2

γ
(1 +

−→
k 2

γ
)− 8

−→
k 2θ

γ2

é
λ2 =

γ

2

Ñ
1−

√
1 +

4
−→
k 2

γ
(1 +

−→
k 2

γ
) +

8
−→
k 2θ

γ2

é
λ3 =

γ

2

Ñ
1 +

√
1 +

4
−→
k 2

γ
(1 +

−→
k 2

γ
)− 8

−→
k 2θ

γ2

é
λ4 =

γ

2

Ñ
1 +

√
1 +

4
−→
k 2

γ
(1 +

−→
k 2

γ
) +

8
−→
k 2θ

γ2

é
λ2 and λ4 are always well defined because everything is positive under the square root
hence there are no difficulties. However it’s not trivial for λ1 and λ3

Now we have different sub-cases to study the sign of the "square rooted term" in λ1 and λ3.
We need this condition :

1 +
4
−→
k 2

γ
(1 +

−→
k 2

γ
)− 8

−→
k 2θ

γ2
> 0 (54)

And for that, we introduce the following function to study :

h(x) = x4 + (γ − 2θ)x2 +
γ2

4
(55)

This function can be expressed in a more suitable way by introducing the new variable :
X = x2 =

−→
k 2.

We can now express h with this new variable and study : X2 + (γ − 2θ)X + γ2

4
.

Let’s solve this equation in order to find when this quantity is indeed positive :

Let’s denote the discriminant ∆ = 4θ(θ − γ).

By looking at it there are immediately 3 sub cases emerging :
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— ∆ < 0 ie γ > θ : there are no real solutions,and the function is always positive, so
eigenvalues are defined and we are satisfied.

— ∆ = 0 ie γ = θ : The equation admit one real solution denoted X0 = γ/2 ie
−→
k 2 = γ/2.

We must retain only the positive solution denoted
−→
k0 =

√
γ
2
. In this case, the function

is always positive or null, so eigenvalues are defined and everything is indeed fine.
— ∆ > 0 ie γ < θ : In this case there is 2 real solutions X± = θ− γ

2
±
√

θ(θ − γ) and we
might have negative values for h.

Let’s focus on the last case ∆ > 0 :

We retain only positive solutions. Numerically we can check that X− is always positive
for any value of θ and γ. We can then take the square root of X− and the valid solutions are
then :

—
−→
k+ =

√
X+

—
−→
k− =

√
X−

Let’s sum up what we learned from the study of eigenvalues :

— If γ ≥ θ All eigenvalues are defined, the solutions are stable, and perturbations are
decaying.

— If γ < θ : λ1 and λ2 are defined if :

—
−→
k <

−→
k−

—
−→
k >

−→
k+

5.7 Physical interpretation

In the situation where θ ≪ γ, implies that the agent has limited foresight and is not stron-
gly interacting with others, the homogeneous solution is stable. This means that small per-
turbations around the equilibrium will eventually dampen out, and the system will converge
to a stable state.

On the other hand, in the situation where γ ≪ θ, which implies that the agent has a
strong ability to look far ahead in the future and is strongly interacting with others, there
can be problems and difficulties in defining a solution. This is because in this case, the
system may exhibit uncontrolled growing perturbations, leading to mathematical challenges
in characterizing the dynamics. From a physical perspective, this suggests that the agents’
strategies and interactions are such that the system becomes more volatile and sensitive
to perturbations, potentially leading to instability or oscillatory behavior. We could imagine
that in this case, the agent can see the terminal cost and will be torn between avoiding stran-
gers and searching for the minimizing position for terminal cost. This may be explaining the
instability.
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6 Conclusion
In conclusion, the choice of parameters γ and θ in the MFG framework can have signifi-

cant implications for the stability and behavior of the system. We have shown the existence
of two different regimes and this analysis provides insights into the dynamics of the mean
field game and highlights the importance of considering the interplay between agents’ fore-
sight and interactions.

Moving forward, it would be interesting to extend this work and study a cost function
closer to the original Schelling model. By incorporating different cost functions, it is possible
to explore and analyze various scenarios and their impact on the behavior and stability of
the system. This could further enhance our understanding of mean field games and their
applications in social dynamics.
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